
Repeated Games: Infinitely Repeated Games 
 

Threats and promises about future behavior can influence current behavior in repeated 
relationships. 

Reasoning a bit different from finite games 

No final state to start backward induction at. 

Finite-horizon: if there are multiple Nash equilibria of the stage game 𝐺 then there may 
be subgame-perfect outcomes of the repeated game 𝐺(𝑇) in which, for any 𝑡 < 𝑇, the 
outcome of stage 𝑡 is not a Nash equilibrium of G. 

Infinitely repeated games: even if the stage game has a unique Nash equilibrium, there 
may be subgame-perfect outcomes of the infinitely repeated game in which no stage's 
outcome is a Nash equilibrium of 𝐺. 

Begin by studying the infinitely repeated Prisoners' Dilemma. 

Then consider the class of infinitely repeated games analogous to the class of 
finitely repeated games: a static game of complete information, 𝐺, is repeated 
infinitely, with the outcomes of all previous stages observed before the current 
stage begins 

The Prisoners' Dilemma in Figure 2.3.6 is to be repeated infinitely and that, for each 𝑡, 

the outcomes of the 𝑡 − 1 preceding plays of the stage game are observed before the 𝑡th  
stage begins. 

Summing the payoffs from this infinite sequence of stage games does not provide a 
useful measure of a player's payoff in the infinitely repeated game. 

Receiving a payoff of 4 in every period is better than receiving a payoff of 1 in 
every period, but the sum of the payoffs is infinity in both cases. 

 

The discount factor 𝛿 = 1/(1 + 𝑟) is the value today of a dollar to be received one stage 
later, where 𝑟 is the interest rate per stage. 

Given a discount factor and a player's payoffs from an infinite sequence of stage games, 
we can compute the present value of the payoffs-the lump-sum payoff that could be put 
in the bank now so as to yield the same bank balance at the end of the sequence. 

 

Player 2 

  𝐿2 𝑅2 

 𝐿1 1,1 5,0 



 𝑅1 0,5 4,4 

 

Figure 2.3.6. 

Definition Given the discount factor 𝛿, the present value of the infinite sequence of 
payoffs 𝜋1, 𝜋2, 𝜋3, … is: 

𝜋1 + 𝛿𝜋2 + 𝛿2𝜋3 +⋯ =∑ 

∞

𝑡=1

𝛿𝑡−1𝜋𝑡 

We can also use 𝛿 to reinterpret what we call an infinitely repeated game as a repeated 
game that ends after a random number of repetitions. 

Suppose that after each stage is played a (weighted) coin is flipped to determine 
whether the game will end. 

If the probability is 𝑝 that the game ends immediately, and therefore 1 − 𝑝 that 
the game continues for at least one more stage, then a payoff 𝜋 to be received in 
the next stage (if it is played) is worth only (1 − 𝑝)𝜋/(1 + 𝑟) before this stage's 
coin flip occurs. 

Likewise, a payoff 𝜋 to be received two stages from now (if both it and the 
intervening stage are played) is worth only (1 − 𝑝)2𝜋/(1 + 𝑟)2 before this stage's 
coin flip occurs. 

Let 𝛿 = (1 − 𝑝)/(1 + 𝑟). 

Then the present value 𝜋1 + 𝛿𝜋2 + 𝛿2𝜋3 +⋯ reflects both the time-value of 
money and the possibility that the game will end. 

Consider the infinitely repeated Prisoners' Dilemma in which each player's discount 
factor is 𝛿 

Each player's payoff in the repeated game is the present value of the player's 
payoffs from the stage games. 

We will show that cooperation (𝑅1, 𝑅2 ) can occur in every stage of a subgame-perfect 
outcome of the infinitely repeated game, even though the only Nash equilibrium in the 
stage game is noncooperation-that is, (𝐿1, 𝐿2). 

The argument is in the spirit of our analysis of the two-stage repeated game with 
multiple Nash Equilibria 

If the players cooperate today then they play a high-payoff equilibrium tomorrow 

Otherwise they play a low-payoff equilibrium tomorrow. 

The difference is that the high-payoff equilibrium that might be played tomorrow is 
continued cooperation tomorrow and thereafter (instead of ‘good NE from stage game’). 



Player 𝑖 begins the infinitely repeated game by cooperating and then cooperates 
in each subsequent stage game if and only if both players have cooperated in 
every previous stage. 

Formally, player 𝑖′𝑠 strategy is: 

Play 𝑅𝑖 in the first stage. In the 𝑡th  stage, if the outcome of all 𝑡 − 1 preceding 
stages has been (𝑅1, 𝑅2) then play 𝑅𝑖; otherwise, play 𝐿𝑖 . 

This strategy is an example of a trigger strategy, so called because player 𝑖 cooperates 
until someone fails to cooperate, which triggers a switch to noncooperation forever after. 

If both players adopt this trigger strategy then the outcome of the infinitely repeated 
game will be ( 𝑅1, 𝑅2) in every stage. 

If 𝛿 is close enough to one then it is a Nash equilibrium of the infinitely repeated 
game for both players to adopt this strategy. 

Such a Nash equilibrium is subgame-perfect, in a sense to be made precise. 

Proposition: the trigger strategy is a Nash Equilibrium (in the whole game). 
 

To show that it is a Nash equilibrium of the infinitely repeated game for both players to 
adopt the trigger strategy… 

Assume that player 𝑖 has adopted the trigger strategy 

Then show that, provided 𝛿 is close enough to one, it is a best response for player 
𝑗 to adopt the strategy also. 

Since player 𝑖 will play 𝐿𝑖  forever once one stage's outcome differs from ( 𝑅1, 𝑅2), player 
𝑗's best response is indeed to play 𝐿𝑗 forever once one stage's outcome differs from 

(𝑅1, 𝑅2). 

It remains to determine player 𝑗 's best response in the first stage, and in any stage such 
that all the preceding outcomes have been (𝑅1, 𝑅2). 

Playing 𝐿𝑗 will yield a payoff of 5 this stage but will trigger noncooperation by player 𝑖 

(and therefore also by player 𝑗 ) forever after, so the payoff in every future stage will be 1. 

The present value of this sequence of payoffs is 

5 + 𝛿 ⋅ 1 + 𝛿2 ⋅ 1 +⋯ = 5 +
𝛿

1 − 𝛿
 

Alternatively, playing 𝑅𝑗 will yield a payoff of 4 in this stage and will lead to exactly the 

same choice between 𝐿𝑗 and 𝑅𝑗 in the next stage. 

Let 𝑉 denote the present value of the infinite sequence of payoffs player 𝑗 receives 
from making this choice optimally (now and every time it arises subsequently). 



If playing 𝑅𝑗 is optimal, then: 

𝑉 = 4 + 𝛿𝑉 

𝑉 = 4/(1 − 𝛿) 

Because playing 𝑅𝑗 leads to the same choice next stage. 

So playing 𝑅𝑗 is optimal if and only if 

4

1 − 𝛿
≥ 5 +

𝛿

1 − 𝛿
(2.3.1) 

𝛿 ≥ 1/4 

In the first stage, and in any stage such that all the preceding outcomes have been 
(𝑅1, 𝑅2), player 𝑗 's optimal action (given that player 𝑖 has adopted the trigger strategy) is 
𝑅𝑗 if and only if 𝛿 ≥ 1/4. 

Combining this observation with the fact that 𝑗 's best response is to play 𝐿𝑗 forever once 

one stage's outcome differs from (𝑅1, 𝑅2), we have that it is a Nash equilibrium for both 
players to play the trigger strategy if and only if 𝛿 ≥ 1/4. 

 

Define now a strategy in a repeated game, a subgame in a repeated game, and a 
subgame-perfect Nash equilibrium in a repeated game. 

Stage game 𝐺 = {𝐴1,… , 𝐴𝑛; 𝑢1, … , 𝑢𝑛}: 

Static game of complete information in which players 1 through 𝑛 simultaneously 
choose actions 𝑎1 through 𝑎𝑛 from the action spaces 𝐴1 through 𝐴𝑛, respectively, 
and payoffs are 𝑢1(𝑎1,… , 𝑎𝑛) through 𝑢𝑛(𝑎1, … , 𝑎𝑛). 

We had before a finitely repeated game 𝐺(𝑇) based on 𝐺. 

Define the analogous infinitely repeated game. 

 
Definition: infinitely repeated game 
 

𝐺(∞, 𝛿) denotes the infinitely repeated game in which 𝐺 is repeated forever and the 
players share the discount factor 𝛿. 

For each 𝑡, the outcomes of the 𝑡 − 1 preceding plays of the stage game are observed 

before the 𝑡th  stage begins. 

Each player's payoff in 𝐺(∞, 𝛿) is the present value of the player's payoffs from the 
infinite sequence of stage games. 

In any game (repeated or otherwise), a player's strategy is a complete plan of action: 



It specifies a feasible action for the player in every contingency in which the 
player might be called upon to act. 

In a dynamic game, however, a strategy is more complicated than a simple action. 

In the finitely repeated game 𝐺(𝑇) or the infinitely repeated game 𝐺(∞, 𝛿), the 
history of play through stage 𝑡 is the record of the players' choices in stages 1 
through 𝑡. 

The players might have chosen (𝑎11,… , 𝑎𝑛1) in stage 1, (𝑎12,… , 𝑎𝑛2) in stage 2, …, 
and (𝑎1𝑡 ,… , 𝑎𝑛𝑡) in stage 𝑡, for example, where for each player 𝑖 and stage 𝑠 the 
action 𝑎𝑖𝑠 belongs to the action space 𝐴𝑖. 

Definition In the finitely repeated game 𝐺(𝑇) or the infinitely repeated game 𝐺(∞, 𝛿), a 

player's strategy specifies the action the player will take in each stage, for each possible 
history of play through the previous stage. 

Subgames 
 

Definition In the finitely repeated game 𝐺(𝑇), a subgame beginning at stage 𝑡 + 1 is the 

repeated game in which 𝐺 is played 𝑇 − 𝑡 times, denoted 𝐺(𝑇 − 𝑡). 

There are many subgames that begin at stage 𝑡 + 1, one for each of the possible histories 
of play through stage 𝑡. 

In the infinitely repeated game 𝐺(∞, 𝛿), each subgame beginning at stage 𝑡 + 1 is 
identical to the original game 𝐺(∞, 𝛿). 

As in the finite-horizon case, there are as many subgames beginning at stage 𝑡 + 1 of 
𝐺(∞, 𝛿) as there are possible histories of play through stage 𝑡. 

Note that the 𝑡th  stage of a repeated game taken on its own is not a subgame of 
the repeated game (assuming 𝑡 < 𝑇 in the finite case). 

 

Proposition: The trigger strategy in the PD is a subgame perfect Nash equilibrium. 
 

We must show that the trigger strategies constitute a Nash equilibrium on every 
subgame of that infinitely repeated game. 

Recall that every subgame of an infinitely repeated game is identical to the game as a 
whole. 

In the trigger-strategy Nash equilibrium of the infinitely repeated Prisoners' Dilemma, 
these subgames can be grouped into two classes: 

(i) Subgames in which all the outcomes of earlier stages have been ( 𝑅1, 𝑅2) 



(ii) Subgames in which the outcome of at least one earlier stage differs from 
(𝑅1, 𝑅2). 
 

If the players adopt the trigger strategy for the game as a whole, then 

(i) the players' strategies in a subgame in the first class are again the trigger 
strategy, which we have shown to be a Nash equilibrium of the game as a 
whole 

(ii) and the players' strategies in a subgame in the second class are simply to 
repeat the stage-game equilibrium (𝐿1, 𝐿2) forever, which is also a Nash 
equilibrium of the game as a whole. 

Thus, the trigger-strategy Nash equilibrium of the infinitely repeated Prisoners' Dilemma 
is subgame-perfect. 

 

 

Figure 2.3.7. 

We next apply analogous arguments in the infinitely repeated game 𝐺(∞, 𝛿). 

These arguments lead to Friedman's (1971) Theorem for infinitely repeated games. 

To state the theorem, we need two final definitions. 



First, we call the payoffs (𝑥1,… , 𝑥𝑛) feasible in the stage game 𝐺 if they are a convex 
combination (i.e., a weighted average, where the weights are all nonnegative and sum to 
one) of the pure-strategy payoffs of 𝐺. 

The set of feasible payoffs for the Prisoners' Dilemma in Figure 2.3.6 is the 
shaded region in Figure 2.3.7. 

The pure-strategy payoffs (1,1), (0,5), (4,4), and (5,0) are feasible. 

Other feasible payoffs include the pairs (𝑥, 𝑥) for 1 < 𝑥 < 4, which result from 
weighted averages of (1,1) and (4,4), and the pairs (𝑦, 𝑧) for 𝑦 + 𝑧 = 5 and 0 <
𝑦 < 5, which result from weighted averages of (0,5) and (5,0). 

The other pairs in (the interior of) the shaded region in Figure 2.3.7 are weighted 
averages of more than two pure-strategy payoffs. 

To achieve a weighted average of pure-strategy payoffs, the players could use a 
public randomizing device: by playing (𝐿1, 𝑅2) or (𝑅1, 𝐿2) depending on a flip of a 
(fair) coin, for example, they achieve the expected payoffs (2.5,2.5). 

Second: we need a rescaling of the players' payoffs. 

We continue to define each player's payoff in the infinitely repeated game 𝐺(∞, 𝛿) 
to be the present value of the player's infinite sequence of stagegame payoffs 

But it is more convenient to express this present value in terms of the average 
payoff from the same infinite sequence of stage-game payoffs-the payoff that 
would have to be received in every stage so as to yield the same present value. 

Let the discount factor be 𝛿. 

Suppose the infinite sequence of payoffs 𝜋1, 𝜋2, 𝜋3, … has a present value of 𝑉. 

If the payoff 𝜋 were received in every stage, the present value would be 𝜋/(1 − 𝛿). 

For 𝜋 to be the average payoff from the infinite sequence 𝜋1, 𝜋2, 𝜋3… with 
discount factor 𝛿, these two present values must be equal, so 𝜋 = 𝑉(1 − 𝛿). 

That is, the average payoff is (1 − 𝛿) times the present value. 

Definition Given the discount factor 𝛿, the average payoff of the infinite sequence of 

payoffs 𝜋1, 𝜋2, 𝜋3, … is 

(1 − 𝛿)∑  

∞

𝑡=1

𝛿𝑡−1𝜋𝑡 

The advantage of the average payoff over the present value is that the former is directly 
comparable to the payoffs from the stage game. 



In the Prisoners' Dilemma in Figure 2.3.6, both players might receive a payoff of 4 in 
every period. 

Such an infinite sequence of payoffs has an average payoff of 4 but a present 
value of 4/(1 − 𝛿). 

Since the average payoff is just a rescaling of the present value, however, 
maximizing the average payoff is equivalent to maximizing the present value. 

We are at last ready to state the main result in our discussion of infinitely repeated 
games: 

Theorem (Friedman 1971) 

Let G be a finite, static game of complete information. 

Let (𝑒1,… , 𝑒𝑛) denote the payoffs from a Nash equilibrium of 𝐺 

Let (𝑥1, … , 𝑥𝑛) denote any other feasible payoffs from 𝐺. 

If 𝑥𝑖 > 𝑒𝑖 for every player 𝑖 and if 𝛿 is sufficiently close to one, then there exists a 
subgame-perfect Nash equilibrium of the infinitely repeated game 𝐺(∞, 𝛿) that achieves 
(𝑥1, … , 𝑥𝑛) as the average payoff. 

 

Figure 2.3.8 



In the context of the Prisoners' Dilemma in Figure 2.3.6, Friedman's Theorem 
guarantees that any point in the cross-hatched region in Figure 2.3.8 can be achieved as 
the average payoff in a subgame-perfect Nash equilibrium of the repeated game, 
provided the discount factor is sufficiently close to one. 

One remark 
 

In the (one-shot) Prisoners' Dilemma in Figure 2.3.6, player 𝑖 can guarantee receiving at 
least the Nash equilibrium payoff of 1 by playing 𝐿𝑖 . 

In a one-shot Cournot duopoly game, in contrast, a firm cannot guarantee receiving the 
Nash-equilibrium profit by producing the Nash-equilibrium quantity 

The only profit a firm can guarantee receiving is zero, by producing zero 

Given an arbitrary stage game 𝐺, let 𝑟𝑖 denote player 𝑖 's reservation payoff-the largest 
payoff player 𝑖 can guarantee receiving, no matter what the other players do. 

Hence 𝑟𝑖 ≤ 𝑒𝑖 (where 𝑒𝑖 is player 𝑖 's Nash equilibrium payoff used in Friedman's 
Theorem) 

If 𝑟𝑖 were greater than 𝑒𝑖, it would not be a best response for player 𝑖 to play his or 
her Nash-equilibrium strategy. 

In the Prisoners' Dilemma, 𝑟𝑖 = 𝑒𝑖, but in the Cournot duopoly game (and typically), 𝑟𝑖 <
𝑒𝑖. 

Fudenberg and Maskin (1986) show that for two-player games, the reservation payoffs 
(𝑟1, 𝑟2 ) can replace the equilibrium payoffs (𝑒1, 𝑒2) in the statement of Friedman's 
Theorem. 

That is, if (𝑥1, 𝑥2 ) is a feasible payoff from 𝐺, with 𝑥𝑖 > 𝑟𝑖 for each 𝑖, then for 𝛿 
sufficiently close to one there exists a subgame-perfect Nash equilibrium of 𝐺(∞, 𝛿) that 
achieves (𝑥1, 𝑥2) as the average payoff, even if 𝑥𝑖 < 𝑒𝑖 for one or both of the players. 

For games with more than two players, Fudenberg and Maskin provide a mild condition 
under which the reservation payoffs (𝑟1,… , 𝑟𝑛) can replace the equilibrium payoffs 
(𝑒1,… , 𝑒𝑛) in the statement of the Theorem. 

Another Remark 
 

What average payoffs can be achieved by subgame-perfect Nash equilibria when the 
discount factor is not "sufficiently close to one"?  

One way to approach this question is to consider a fixed value of 𝛿 and determine the 
average payoffs that can be achieved if the players use trigger strategies that switch 
forever to the stage-game Nash equilibrium after any deviation. 



Smaller values of 𝛿 make a punishment that will begin next period less effective in 
deterring a deviation this period. 

Nonetheless, the players typically can do better than simply repeating a stage-game Nash 
equilibrium. 

A second approach, pioneered by Abreu (1988), is based on the idea that the most 
effective way to deter a player from deviating from a proposed strategy is to threaten to 
administer the strongest credible punishment should the player deviate 

I.e., threaten to respond to a deviation by playing the subgame-perfect Nash 
equilibrium of the infinitely repeated game that yields the lowest payoff of all 
such equilibria for the player who deviated. 

In most games, switching forever to the stage-game Nash equilibrium is not the 
strongest credible punishment 

Hence some average payoffs can be achieved using Abreu's approach that cannot 
be achieved using the trigger-strategy approach. 

In the Prisoners' Dilemma, however, the stage-game Nash equilibrium yields the 
reservation payoffs (that is, 𝑒𝑖 = 𝑟𝑖 ), so the two approaches are equivalent. 

Proof of Friedman’s Theorem 

Let (𝑎𝑒1,… , 𝑎𝑒𝑛) be the Nash equilibrium of 𝐺 that yields the equilibrium payoffs 
(𝑒1, … , 𝑒𝑛  ). 

Let (𝑎𝑥1,… , 𝑎𝑥𝑛) be the collection of actions that yields the feasible payoffs (𝑥1, … , 𝑥𝑛).  

(The latter notation is only suggestive because it ignores the public randomizing 
device typically necessary to achieve arbitrary feasible payoffs.) 

Consider the following trigger strategy for player 𝑖 : 

Play 𝑎𝑥𝑖 in the first stage. 

In the 𝑡𝑡ℎ  stage, if the outcome of all 𝑡 − 1 preceding stages has been (𝑎𝑥1, … , 𝑎𝑥𝑛) 
then play 𝑎𝑥𝑖 

Otherwise, play 𝑎𝑒𝑖. 

If both players adopt this trigger strategy then the outcome of every stage of the infinitely 
repeated game will be ( 𝑎𝑥1,… , 𝑎𝑥𝑛), with (expected) payoffs (𝑥1,… , 𝑥𝑛). 

We first argue that if 𝛿 is close enough to one, then it is a Nash equilibrium of the 
repeated game for the players to adopt this strategy. 

We then argue that such a Nash equilibrium is subgame-perfect. 

Suppose that all the players other than player 𝑖 have adopted this trigger strategy. 



Since the others will play (𝑎𝑒1,… , 𝑎𝑒,𝑖−1, 𝑎𝑒,𝑖+1,… , 𝑎𝑒𝑛 ) forever once one stage's outcome 

differs from ( 𝑎𝑥1,… , 𝑎𝑥𝑛 ), player 𝑖 's best response is to play 𝑎𝑒𝑖 forever once one stage's 
outcome differs from (𝑎𝑥1,… , 𝑎𝑥𝑛). 

It remains to determine player 𝑖 's best response in the first stage, and in any stage such 
that all the preceding outcomes have been (𝑎𝑥1, … , 𝑎𝑥𝑛). 

Let 𝑎𝑑𝑖 be player 𝑖′ s best deviation from (𝑎𝑥1,… , 𝑎𝑥𝑛). 

That is, 𝑎𝑑𝑖 solves 

max
𝑎𝑖∈𝐴𝑖

 𝑢𝑖(𝑎𝑥1,… , 𝑎𝑥,𝑖−1, 𝑎𝑖 , 𝑎𝑥,𝑖+1, … , 𝑎𝑥𝑛) 

Let 𝑑𝑖 be 𝑖 's payoff from this deviation: 

𝑑𝑖 = 𝑢𝑖(𝑎𝑥1,… , 𝑎𝑥,𝑖−1, 𝑎𝑑𝑖,𝑎𝑥,𝑖+1,… , 𝑎𝑥𝑛 ) 

(Again, we ignore the role of the randomizing device: the best deviation and its payoff 
may depend on which pure strategies the randomizing device has prescribed.) 

We have: 

𝑑𝑖 ≥ 𝑥𝑖 = 𝑢𝑖(𝑎𝑥1, … , 𝑎𝑥,𝑖−1, 𝑎𝑥𝑖 , 𝑎𝑥,𝑖+1, … , 𝑎𝑥𝑛) > 𝑒𝑖 = 𝑢𝑖(𝑎𝑒1,… , 𝑎𝑒𝑛). 

Playing 𝑎𝑑𝑖 will yield a payoff of 𝑑𝑖 at this stage but will trigger 

(𝑎𝑒1,… , 𝑎𝑒,𝑖−1, 𝑎𝑒,𝑖+1, … , 𝑎𝑒𝑛) by the other players forever after, to which the best response 

is 𝑎𝑒𝑖 by player 𝑖, so the payoff in every future stage will be 𝑒𝑖. 

The present value of this sequence of payoffs is 

𝑑𝑖 + 𝛿 ⋅ 𝑒𝑖 + 𝛿2 ⋅ 𝑒𝑖 +⋯ = 𝑑𝑖 +
𝛿

1 − 𝛿
𝑒𝑖 

(Since any deviation triggers the same response by the other players, the only deviation 
we need to consider is the most profitable one.) 

Alternatively, playing 𝑎𝑥𝑖 will yield a payoff of 𝑥𝑖 this stage and will lead to exactly the 
same choice between 𝑎𝑑𝑖 and 𝑎𝑥𝑖 in the next stage. 

Let 𝑉𝑖 denote the present value of the stage-game payoffs player 𝑖 receives from making 
this choice optimally (now and every time it arises subsequently). 

If playing 𝑎𝑥𝑖 is optimal, then 

𝑉𝑖 = 𝑥𝑖 + 𝛿𝑉𝑖 

or 𝑉𝑖 = 𝑥𝑖/(1 − 𝛿) 

If playing 𝑎𝑑𝑖 is optimal, then 



𝑉𝑖 = 𝑑𝑖 +
𝛿

1 − 𝛿
𝑒𝑖 

as derived previously. 

(Assume that the randomizing device is serially uncorrelated. It then suffices to let 𝑑𝑖 be 
the highest of the payoffs to player 𝑖 's best deviations from the various pure-strategy 
combinations prescribed by the randomizing device.) 

So playing 𝑎𝑥𝑖 is optimal if and only if 

𝑥𝑖
1 − 𝛿

≥ 𝑑𝑖 +
𝛿

1 − 𝛿
𝑒𝑖 

or 

𝛿 ≥
𝑑𝑖 − 𝑥𝑖
𝑑𝑖 − 𝑒𝑖

 

Thus, in the first stage, and in any stage such that all the preceding outcomes have been 
(𝑎𝑥1, … , 𝑎𝑥𝑛), player 𝑖 's optimal action (given that the other players have adopted the 
trigger strategy) is 𝑎𝑥𝑖 if and only if: 

𝛿 ≥ (𝑑𝑖 − 𝑥𝑖)/(𝑑𝑖 − 𝑒𝑖). 

Combining this observation with the fact that 𝑖 's best response is to play 𝑎𝑒𝑖 forever once 
one stage's outcome differs from (𝑎𝑥1, …, 𝑎𝑥𝑛 ), we have that it is a Nash equilibrium for 
all the players to play the trigger strategy if and only if 

𝛿 ≥ max
𝑖
 
𝑑𝑖 − 𝑥𝑖
𝑑𝑖 − 𝑒𝑖

 

Since 𝑑𝑖 ≥ 𝑥𝑖 > 𝑒𝑖, it must be that (𝑑𝑖 − 𝑥𝑖)/(𝑑𝑖 − 𝑒𝑖) < 1 for every 𝑖, so the maximum of 
this fraction across all the players is also strictly less than one. 

It remains to show that this Nash equilibrium is subgame perfect. 

That is, the trigger strategies must constitute a Nash equilibrium in every subgame of 
𝐺(∞, 𝛿). 

Recall that every subgame of 𝐺(∞, 𝛿) is identical to 𝐺(∞, 𝛿) itself. 

In the trigger-strategy Nash equilibrium, these subgames can be grouped into two 
classes: 

(i) subgames in which all the outcomes of earlier stages have been (𝑎𝑥1,… , 𝑎𝑥𝑛) 
(ii) subgames in which the outcome of at least one earlier stage differs from 

(𝑎𝑥1,… , 𝑎𝑥𝑛). 
 

If the players adopt the trigger strategy for the game as a whole, then 



(i) the players' strategies in a subgame in the first class are again the trigger 
strategy, which we have just shown to be a Nash equilibrium of the game 
as a whole 

(ii) the players' strategies in a subgame in the second class are simply to 
repeat the stage-game equilibrium (𝑎𝑒1, … , 𝑎𝑒𝑛) forever, which is also a 
Nash equilibrium of the game as a whole. 

Thus, the trigger-strategy Nash equilibrium of the infinitely repeated game is 
subgame-perfect. 

Collusion between Cournot Duopolists 
Friedman (1971) was the first to show that cooperation could be achieved in an infinitely 
repeated game by using trigger strategies that switch forever to the stage-game Nash 
equilibrium following any deviation. 

The original application was to collusion in a Cournot oligopoly, as follows. 

Static Cournot game: 

Aggregate quantity on the market: 𝑄 = 𝑞1 + 𝑞2 

Market-clearing price is 𝑃(𝑄) = 𝑎 − 𝑄, assuming 𝑄 < 𝑎. 

Each firm has a marginal cost of 𝑐 and no fixed costs. 

Firms choose quantities simultaneously. 

In the unique Nash equilibrium, each firm produces: 

𝑞𝐶 = (𝑎 − 𝑐)/3 

Equilibrium aggregate quantity 2(𝑎 − 𝑐)/3 exceeds the monopoly quantity, 𝑞𝑚 ≡
(𝑎 − 𝑐)/2, 

Hence both firms would be better off if each produced half the monopoly 
quantity, 𝑞𝑖 = 𝑞𝑚/2. 

Consider the infinitely repeated game based on this Cournot stage game when both firms 
have the discount factor 𝛿. 

Trigger strategy: 

Produce half the monopoly quantity, 𝑞𝑚/2, in the first period. In the 𝑡th  period, produce 
𝑞𝑚/2 if both firms have produced 𝑞𝑚/2 in each of the 𝑡 − 1 previous periods; otherwise, 
produce the Cournot quantity, 𝑞𝐶. 

The profit to one firm when both produce 𝑞𝑚/2 is 
𝜋𝑚

2
= (𝑎 − 𝑐)2/8, which we will denote 

by 𝜋𝑚/2. 

The profit to one firm when both produce 𝑞𝐶 is 𝜋𝐶 = (𝑎 − 𝑐)2/9 



If firm 𝑖 is going to produce 𝑞𝑚/2 this period then the quantity that maximizes firm 𝑗 's 
profit this period solves 

max
𝑞𝑗

 (𝑎 − 𝑞𝑗 −
1

2
𝑞𝑚 − 𝑐) 𝑞𝑗 

The solution is 𝑞𝑗 = 3(𝑎 − 𝑐)/8, with associated profit of 𝜋𝑑 = 9(𝑎 − 𝑐)2/64 (" 𝑑 " for 

deviation). 

Thus, it is a Nash equilibrium for both firms to play the trigger strategy given earlier 
provided that 

1

1 − 𝛿
⋅
1

2
𝜋𝑚 ≥ 𝜋𝑑 +

𝛿

1 − 𝛿
⋅ 𝜋𝐶 (2.3.2) 

Substituting the values of 𝜋𝑚 , 𝜋𝑑, and 𝜋𝐶  into (2.3.2) yields 𝛿 ≥ 9/17. 

For the same reasons as in the previous section, this Nash equilibrium is subgame-
perfect. 

We can also ask what the firms can achieve if 𝛿 < 9/17. 

First approach: 

We first determine, for a given value of 𝛿, the most-profitable quantity the firms can 
produce if they both play trigger strategies that switch forever to the Cournot quantity 
after any deviation. 

We know that such trigger strategies cannot support a quantity as low as half the 
monopoly quantity 

But for any value of 𝛿 it is a subgame-perfect Nash equilibrium simply to repeat 
the Cournot quantity forever. 

Therefore, the most-profitable quantity that trigger strategies can support is 
between 𝑞𝑚/2 and 𝑞𝐶. 

To compute this quantity, consider the following trigger strategy: 

Produce 𝑞∗ in the first period. 

In the 𝑡th  period, produce 𝑞∗ if both firms have produced 𝑞∗ in each of the 
𝑡 − 1 previous periods 

Otherwise, produce the Cournot quantity, 𝑞𝐶. 

The profit to one firm if both play 𝑞∗ is 𝜋∗ = (𝑎 − 2𝑞∗ − 𝑐)𝑞∗.  

If firm 𝑖 is going to produce 𝑞∗ this period, then the quantity that maximizes firm 𝑗 's 
profit this period solves 



max
𝑞𝑗

 (𝑎 − 𝑞𝑗 − 𝑞∗ − 𝑐)𝑞𝑗 

Solution is 𝑞𝑗 = (𝑎 − 𝑞∗ − 𝑐)/2 

Associated profit of 𝜋𝑑 = (𝑎 − 𝑞∗ − 𝑐)2/4 

It is a Nash equilibrium for both firms to play the trigger strategy given above if and only 
if: 

1

1 − 𝛿
⋅ 𝜋∗ ≥ 𝜋𝑑 +

𝛿

1 − 𝛿
⋅ 𝜋𝐶  

Solving the resulting quadratic in 𝑞∗ shows that the lowest value of 𝑞∗ for which the 
trigger strategies given above are a subgameperfect Nash equilibrium is 

𝑞∗ =
9 − 5𝛿

3(9 − 𝛿)
(𝑎 − 𝑐) 

which is monotonically decreasing in 𝛿, approaching 𝑞𝑚/2 as 𝛿 approaches 9/17 and 
approaching 𝑞𝐶 as 𝛿 approaches zero. 

Second approach (strongest credible punishment – Abreu 1986): 

We show that Abreu's approach can achieve the monopoly outcome in our model when 
𝛿 = 1/2 (which is less than 9/17). 

Abreu (1986) applies this idea to Cournot models more general than ours using 
an arbitrary discount factor 

Consider the following "two phase" (or "carrot-and-stick") strategy: 

Produce half the monopoly quantity, 𝑞𝑚/2, in the first period. 

In the 𝑡th  period, produce 𝑞𝑚/2 if both firms produced 𝑞𝑚/2 in period 𝑡 − 1, 
produce 𝑞𝑚/2 if both firms produced 𝑥 in period 𝑡 − 1 

Otherwise produce 𝑥. 

This strategy involves a (one-period) punishment phase in which the firm produces 𝑥 
and a (potentially infinite) collusive phase in which the firm produces 𝑞𝑚/2. 

If either firm deviates from the collusive phase, then the punishment phase begins. 

If either firm deviates from the punishment phase, then the punishment phase 
begins again. 

If neither firm deviates from the punishment phase, then the collusive phase 
begins again. 

The profit to one firm if both produce 𝑥 is (𝑎 − 2𝑥 − 𝑐)𝑥, which we will denote by 𝜋(𝑥).  



Let 𝑉(𝑥) denote the present value of receiving 𝜋(𝑥) this period and half the monopoly 
profit forever after: 

𝑉(𝑥) = 𝜋(𝑥) +
𝛿

1 − 𝛿
⋅
1

2
𝜋𝑚 

If firm 𝑖 is going to produce 𝑥 this period, then the quantity that maximizes firm 𝑗 's 
profit this period solves 

max
𝑞𝑗

 (𝑎 − 𝑞𝑗 − 𝑥 − 𝑐)𝑞𝑗 

Solution: 𝑞𝑗 = (𝑎 − 𝑥 − 𝑐)/2 

Associated profit: 𝜋𝑑𝑝(𝑥) = (𝑎 − 𝑥 − 𝑐)2/4 (𝑑𝑝 stands for deviation from the 

punishment). 

If both firms play the two-phase strategy above, then the subgames in the infinitely 
repeated game can be grouped into two classes: 

(i) collusive subgames, in which the outcome of the previous period was either 
(𝑞𝑚/2, 𝑞𝑚/2) or (𝑥, 𝑥) 

(ii) punishment subgames, in which the outcome of the previous period was 
neither ( 𝑞𝑚/2, 𝑞𝑚/2 ), nor (𝑥, 𝑥). 

For it to be a subgame-perfect Nash equilibrium for both firms to play the two-phase 
strategy, it must be a Nash equilibrium to obey the strategy in each class of 
subgames. 

In the collusive subgames, each firm must prefer to receive half the monopoly profit 
forever than to receive 𝜋𝑑 this period and the punishment present value 𝑉(𝑥) next 
period: 

1

1 − 𝛿
⋅
1

2
𝜋𝑚 ≥ 𝜋𝑑 + 𝛿𝑉(𝑥) (2.3.3) 

In the punishment subgames, each firm must prefer to administer the punishment than 
to receive 𝜋𝑑𝑝 this period and begin the punishment again next period: 

𝑉(𝑥) ≥ 𝜋𝑑𝑝(𝑥) + 𝛿𝑉(𝑥) (2.3.4) 

Substituting for 𝑉(𝑥) in (2.3.3) yields 

𝛿 (
1

2
𝜋𝑚 − 𝜋(𝑥)) ≥ 𝜋𝑑 −

1

2
𝜋𝑚 

That is, the gain this period from deviating must not exceed the discounted value of the 
loss next period from the punishment. 

(Provided neither firm deviates from the punishment phase, there is no loss after 
next period, since the punishment ends and the firms return to the monopoly 
outcome, as though there had been no deviation.) 



Likewise, (2.3.4) can be rewritten as 

𝛿 (
1

2
𝜋𝑚 − 𝜋(𝑥)) ≥ 𝜋𝑑𝑝 − 𝜋(𝑥) 

with an analogous interpretation. 

For 𝛿 = 1/2, (2.3.3) is satisfied provided 𝑥/(𝑎 − 𝑐) is not between 1/8 and 3/8, and 
(2.3.4) is satisfied if 𝑥/(𝑎 − 𝑐) is between 3/10 and 1/2. 

Thus, for 𝛿 = 1/2, the two-phase strategy achieves the monopoly outcome as a 
subgameperfect Nash equilibrium provided that 3/8 ≤ 𝑥/(𝑎 − 𝑐) ≤ 1/2. 

Other Dynamic Oligopoly Models 
 

There are many other models of dynamic oligopoly that enrich the simple model 
developed here. 

Two classes of such models: 

State-variable models 

Imperfect-monitoring models. 

Rotemberg and Saloner (1986, and Problem 2.14) study collusion over the business cycle 
by allowing the intercept of the demand function to fluctuate randomly across periods. 

In each period, all firms observe that period's demand intercept before taking 
their actions for that period; 

In other applications, the players could observe the realization of another state 
variable at the beginning of each period. 

The incentive to deviate from a given strategy thus depends both on the value of 
demand this period and on the likely realizations of demand in future periods. 

(Rotemberg and Saloner assume that demand is independent across periods, so 
the latter consideration is independent of the current value of demand, but later 
authors have relaxed this assumption.) 

Green and Porter (1984) study collusion when deviations cannot be detected perfectly: 

Rather than observing the other firms' quantity choices, each firm observes only 
the market-clearing price, which is buffeted by an unobservable shock each 
period. 

In this setting, firms cannot tell whether a low market-clearing price occurred 
because one or more firms deviated or because there was an adverse shock. 



Green and Porter examine trigger-price equilibria, in which any price below a 
critical level triggers a punishment period during which all firms play their 
Cournot quantities. 

In equilibrium, no firm ever deviates. 

Nonetheless, an especially bad shock can cause the price to fall below the critical 
level, triggering a punishment period. 

Since punishments happen by accident, infinite punishments of the kind 
considered in the trigger-strategy analysis in this section are not optimal. 

Two-phase strategies of the kind analyzed by Abreu might seem promising 

Abreu, Pearce, and Stacchetti (1986) show that they can be optimal. 
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